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Abstract
In this paper we study the dominant microscopic processes that generate
nearly the whole one-electron removal and addition spectral weight of the one-
dimensional Hubbard model for all values of the on-site repulsion U . We
find that for the doped Mott–Hubbard insulator there is a competition between
the microscopic processes that generate the one-electron upper-Hubbard-
band spectral-weight distributions of the Mott–Hubbard insulating phase and
finite-doping-concentration metallic phase, respectively. The spectral-weight
distributions generated by the non-perturbative processes studied here are
shown elsewhere to agree quantitatively for the whole momentum and energy
bandwidth with the peak dispersions observed by angle-resolved photoelectron
spectroscopy in quasi-one-dimensional compounds.

1. Introduction

For energies larger than the transfer integrals for electronic hopping between the chains,
the one-dimensional (1D) Hubbard Hamiltonian is the simplest model for the description of
electronic correlation effects on the spectral properties of quasi-1D compounds [1–4]. It reads

Ĥ = −t
∑

j,σ

[c†
j,σ c j+1,σ + h.c.] + U

∑

j

n̂ j,↑n̂ j,↓, (1)

where c†
j,σ and c j,σ are spin-projection σ = ↑,↓ electron operators at site j = 1, 2, . . . , Na ,

n̂ j,σ = c†
j,σ c j,σ , and t is the transfer integral. In contrast to other interacting models [5]

and in spite of the model exact solution [6, 7], for finite values of the on-site repulsion U
little is known about the non-perturbative microscopic processes that control its finite-energy
spectral properties. Recently, the problem was studied in [8, 9] by the use of a pseudofermion
description. The preliminary predictions of the method introduced in these references agree
quantitatively for the whole momentum and energy bandwidth with the peak dispersions
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observed by angle-resolved photoelectron spectroscopy in the quasi-1D conductor TTF-
TCNQ [1, 2] and are consistent with the phase diagram of the (TMTTF)2X and (TMTSF)2X
series of compounds [4]. More recently, results for the TTF-TCNQ spectrum consistent
with those of [1, 2] were obtained by the dynamical density matrix renormalization group
method [3]. Within the method of [8, 9], the finite-energy spectral properties are controlled
by the overall pseudofermion phase shifts, through the pseudofermion anticommutators [10].
Such a method is a generalization for all values of the on-site repulsion U of the technique
introduced in [11, 12] for U → ∞.

The studies of this paper focus on the specific case of the one-electron spectral weight
and use the pseudofermion description used in the general studies of [8]. Such a description
is related to the holon, spinon, and c pseudoparticle representation introduced in [13]. Here
we study the generators of the one-electron dominant microscopic processes and the interplay
between such processes and the metal–Mott–Hubbard insulator quantum phase transition [14].
Since the mechanisms found here are expected to occur in other correlated models, our
results are of interest for the further general understanding of the microscopic mechanisms
associated with the quantum phase transitions. Furthermore, they are of interest for the further
understanding of the unusual spectral properties observed in low-dimensional materials.

The model (1) describes N↑ spin-up electrons and N↓ spin-down electrons in a chain of
Na sites. We denote the electronic number by N = N↑ + N↓. The number of lattice sites Na

is even and very large. For simplicity, we use units such that both the lattice spacing a and the
Planck constant are unity. In these units the chain length L is such that L = Naa = Na . Our
results refer to periodic boundary conditions. We consider an electronic density n = n↑ +n↓ in
the range 0 < n � 1 and a spin density m = n↑ − n↓ = 0, where nσ = Nσ /L and σ = ↑,↓.
We introduce the Fermi momenta which, in the thermodynamic limit L → ∞, are given by
±kFσ = ±πnσ and ±kF = ±[kF↑ + kF↓]/2 = ±πn/2. The one-electron spectral function
Bl(k, ω) such that l = −1 (and l = +1) for electron removal (and addition), is given by

B−1(k, ω) =
∑

σ

∑

f

|〈 f |ck,σ |GS〉|2δ(ω + E f,N−1 − EGS
)
, ω < 0;

B+1(k, ω) =
∑

σ

∑

f ′
|〈 f ′|c†

k,σ |GS〉|2δ(ω − E f ′,N+1 + EGS
)
, ω > 0.

(2)

Here ck,σ (and c†
k,σ ) are electron annihilation (and creation) operators of momentum k and |GS〉

denotes the initial N-electron ground state. The f and f ′ summations run over the N − 1 and
N + 1-electron excited states, respectively, and [E f,N−1 − EGS] and [E f ′,N+1 − EGS] are the
corresponding excitation energies.

The Hamiltonian (1) commutes with the generators of the η-spin and spin SU(2)

algebras [13, 15, 16]. Here we call the η-spin and spin of the energy-eigenstates η and S,
respectively, and the corresponding projections ηz and Sz . All such states can be described
in terms of occupancy configurations of η-spin 1/2 holons, spin 1/2 spinons, and η-spin-
less and spin-less c0 pseudoparticles [13]. (The latter objects are called c pseudoparticles
in [13, 17].) We use the notation ±1/2 holons and ±1/2 spinons according to the values of
the η-spin and spin projections, respectively. For large values of U/t the +1/2 holons and
−1/2 holons become the holons and doublons, respectively, used in the studies of [18]. The
electron–rotated-electron unitary transformation [13] maps the electrons onto rotated electrons
such that rotated-electron double occupation, unoccupancy, and spin-up and spin-down single
occupation are good quantum numbers for all values of U . While the −1/2 and +1/2 holons
refer to the rotated-electron doubly occupied and unoccupied sites, respectively, the −1/2 and
+1/2 spinons correspond to the spin degrees of freedom of the spin-down and spin-up rotated-
electron singly occupied sites, respectively. The charge degrees of freedom of the latter sites are
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described by the spin-less and η-spin-less c0 pseudoparticles. In turn, the cν pseudoparticles
(and sν pseudoparticles) such that ν = 1, 2, . . . are η-spin singlet (and spin singlet) 2ν-holon
(and 2ν-spinon) composite objects. Thus, the numbers of ±1/2 holons (α = c) and ±1/2
spinons (α = s) read Mα,±1/2 = Lα,±1/2 + ∑∞

ν=1 νNαν , where α = c, s, Nαν denotes the
number of αν pseudoparticles, and Lc,±1/2 = [η ∓ ηz] and Ls,±1/2 = [S ∓ Sz] gives the
number of ±1/2 Yang holons and ±1/2 HL spinons, respectively. These are the holons and
spinons that are not part of composite pseudoparticles. The total number of holons (α = c) and
spinons (α = s) is given by Mα = [Mα,+1/2 + Mα,−1/2].

The c0 pseudofermions and composite pseudofermions are generated from the c0
pseudoparticles and composite pseudoparticles of [13] by a unitary transformation [8]. It
introduces shifts of order 1/L in the pseudoparticle discrete momentum values and leaves
all other pseudoparticle properties invariant. It is useful for our study to consider the
pseudofermion subspace (PS), which is spanned by the initial ground state |GS〉 and all excited
energy eigenstates contained in the one-electron excitations c†

j,σ |GS〉 and c j,σ |GS〉 [8]. The
local αν pseudofermion creation (and annihilation) operator f †

x j ,αν (and fx j ,αν ) creates (and

annihilates) a αν pseudofermion at the effective αν lattice site of spatial coordinate x j = ja0
αν .

Here j = 1, 2, . . . , N∗
αν and a0

αν = 1/n∗
αν is the effective αν lattice constant given in

equation (55) of [17] in units of the electronic lattice constant and n∗
αν = N∗

αν/L = N∗
αν/Na .

The general expression of the number of effective αν lattice sites N∗
αν is given in equation (B6)

of [13], where the number of αν pseudofermion holes Nh
αν is provided in equation (B.11) of

the same reference. All PS energy eigenstates can be described by occupancy configurations of
αν pseudofermions, −1/2 Yang holons, and −1/2 HL spinons [13]. For the ground state,
Nc0 = N, Ns1 = N↓, and Ncν = Nsν′ = Lα,−1/2 = 0 for α = c, s, ν > 0, and
ν ′ > 1. The deviations �Nαν ,�Nh

αν ,�Lc,−1/2,�Ls,−1/2,�Mc,−1/2,�Ms,−1/2,�Mc , �Ms

of the above numbers which result from the ground-state–excited-energy-eigenstate transitions
play a major role in our study. It follows from the values of the ground-state numbers that
�Ncν = Ncν ,�Nsν′ = Nsν′ ,�Lc,−1/2 = Lc,−1/2,�Ls,−1/2 = Ls,−1/2,�Mc,−1/2 = Mc,−1/2,
and �Ms,−1/2 = Ms,−1/2 for ν > 0 and ν ′ > 1. Thus, often we replace the latter deviations by
the corresponding numbers. A concept widely used in our studies is that of a CPHS ensemble
subspace [8, 9]. (Here CPHS stands for c0 pseudofermion, holon, and spinon.) Such a subspace
is spanned by all energy eigenstates with fixed values for the −1/2 Yang holon number
Lc,−1/2,−1/2 HL spinon number Ls,−1/2, and for the sets of αν pseudofermion numbers {Ncν}
and {Nsν′ } corresponding to the ν = 0, 1, 2, . . . and ν ′ = 1, 2, . . . branches. Fortunately,
nearly the whole one-electron weight corresponds to subspaces involving the c0, c1, s1, and s2
branches only.

For the (N = 1)-electron problem, the operator Ôl
N , j = Ôl

1, j of the spectral-function

expressions of equation (7) of [9] is the operator c j,σ for l = −1 and c†
j,σ for l = +1. These

expressions can be re-expressed in terms of the operator 	̂l
N , j , which plays an important role

in our study and is defined in terms of the original N -electron operator Ôl
N , j in equations (27)

and (28) of [9]. For the present N = 1 problem we use the notations θ̂ j,σ and θ̂
†
j,σ for the

operators 	̂−1
1, j and 	̂+1

1, j , respectively, and call θ̃i, j,σ and θ̃
†
i, j,σ the operators 	̃−1

1i , j and 	̃+1
1i , j ,

respectively, on the right-hand side of equation (32) of [9]. The latter equation then reads

θ̂ j,σ = θ̃0, j,σ +
∞∑

i=1

√
c−1

i θ̃i, j,σ ; j = 1, 2, . . . , Na ; l = ±1, (3)

and a similar expression with c−1
i replaced by c+1

i holds for θ̂
†
j,σ , where for i > 0 the index

i = 1, 2, . . . is a positive integer number which increases for increasing values of the number
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of extra pairs of creation and annihilation rotated-electron operators in the expressions of the
operators θ̃i, j,σ relative to that of θ̃0, j,σ , and the value of the constants c±1

i reads c±1
0 = 1 and

for i > 0 is a function of n, m, and U/t such that c±1
i → 0 as U/t → ∞ [9]. Moreover, the

operators θ̂ j,σ and θ̃0, j,σ of equation (3) have the same expression in terms of local creation and
annihilation electron and rotated-electron operators, respectively.

According to the general studies of [8, 9], the i = 0 operators θ̃
†
0, j,σ and θ̃0, j,σ generate

nearly the whole spectral weight of the corresponding one-electron problems for all values of
U/t and L → ∞. In the ensuing section we confirm numerically that the same occurs for finite
values of the chain length L and treat the problem analytically for L → ∞ and large values
of U/t . Since the physics associated with the dominant microscopic processes that control
the one-electron weight distribution is simplest when understood in terms of pseudofermion
occupancies, in section 3 we calculate the expressions of the above operators in terms of local
pseudofermion operators. In section 4 we study the main microscopic effects of the metal–
Mott–Hubbard insulator quantum phase transition onto the one-electron spectral properties.
Finally, the concluding remarks are presented in section 5.

2. One-electron spectral-weight dominant processes

Application to the ground state of the operators θ̃
†
0, j,σ or θ̃0, j,σ generates transitions to excited

energy eigenstates whose Mc,−1/2 = Lc,−1/2 + ∑∞
ν=1 νNcν values obey the following exact

charge selection rule [9]:

Mc,−1/2 = 0, electron removal; Mc,−1/2 = 0, 1, electron addition, (4)

where electron refers here to a rotated electron. Thus, in the present case we only need to
consider excited states such that Lc,−1/2 � 1 and Ncν = 0 for ν > 1. Moreover, the values of
the numbers of −1/2 HL spinons generated by application to the ground state of the operators
c†

j,σ and c j,σ are restricted to the following ranges:

Ls,−1/2 = 0, ↓ electron removal, ↑ electron addition

= 0, 1, ↓ electron addition, ↑ electron removal, (5)

whereas the permitted values of Lc,−1/2 coincide with those of equation (4).
While the selection rules (4) and (5) are exact for the one-rotated-electron and one-electron

problems, respectively, direct evaluation of the weights by the method introduced of [8, 9]
reveals that for N0 = 1 94%–98% of the spectral weight generated by the operators θ̃

†
0, j,σ or

θ̃0, j,σ corresponds to transitions to excited energy eigenstates whose Ls,−1/2 and Nsν values for
ν > 1 are in the following range:

Ls,−1/2 +
∞∑

ν=2

(ν − 1)Nsν = 0, ↓ electron removal, ↑ electron addition

= 0, 1, ↓ electron addition, ↑ electron removal, (6)

where electron refers here to rotated electron. Thus, in the present case most of the spectral
weight corresponds to excited states such that Ls,−1/2 � 1 and Nsν = 0 for ν > 2.

One-electron processes associated with excited energy eigenstates whose deviations do
not obey the rule (4) are generated by the operators θ̃i, j,σ or θ̃

†
i, j,σ such that i > 0. We

confirm below that application to the ground state of all such i > 0 operators amounts for
less than 1% of the (k, ω)-plane one-electron removal or addition spectral weight. We start by
confirming that the one-electron processes which generate excited energy eigenstates obeying
the ground-state charge selection rule (4) are dominant for finite values of L and correspond
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to 99.75%–100.00% of the whole electronic spectral weight for all values of U/t . For finite
values of L the thermodynamic Bethe-ansatz equations introduced by Takahashi [7] do not
apply, whereas the Bethe-ansatz solution and the concept of a rotated electron remain valid.
Therefore, for finite values of L we can characterize the excited energy eigenstates in terms of
rotated-electron occupancy configurations and thus of the related ±1/2 holon, ±1/2 spinon,
and c0 pseudofermion number deviations [17]. Moreover, for zero-magnetization initial ground
states the number of excited-energy-eigenstate s1 pseudofermion holes equals the number of
holes in the corresponding Bethe-ansatz spin excitation spectrum. Thus, one can classify the
finite-L processes by the deviation values �Nc0, Mc,−1/2,�Ms,−1/2,�Mc,�Ms , and �Nh

s1.
The correlation energy 2µ, defined in equation (21) of [8], plays an important role in

the model finite-energy spectrum. The limiting value of such a correlation energy is given
in equation (13) of [9]. At half filling it equals the Mott–Hubbard gap, 2µ = EMH. Our
considerations refer mostly to one-electron addition. For simplicity, let us assume that the
initial ground state has zero spin density. In this case the spectral-weight distribution associated
with creation of a spin-up electron has the same form as that associated with creation of a
spin-down electron. Here we consider the former case. For creation of a spin-up rotated
electron, the selection rule (4) only allows the two values �Mc,−1/2 = Mc,−1/2 = 0, 1.
From the relation of the electron and rotated-electron numbers to the holon, spinon, and c0
pseudofermion numbers [13, 17], we find that for creation of a spin-up rotated electron the
following transitions obey the selection rule (4):

(i) Lower-Hubbard-band (LHB) transitions such that �Nc0 = 1,�Mc,−1/2 = 0,�Ms,−1/2 =
0,�Mc = −1, and �Ms = 1. The minimal excitation energy for such transitions is zero.
The sub-class of these transitions that also obey the restrictions of equation (6) is such that
�Nh

s1 = 1.
(ii) Upper-Hubbard-band (UHB) transitions such that �Nc0 = −1,�Mc,−1/2 =

1,�Ms,−1/2 = −1,�Mc = 1, and �Ms = −1. The minimal excitation energy for
such transitions is 2µ. The sub-class of these transitions that also obey the restrictions of
equation (6) correspond to an s1 pseudofermion-hole deviation value �Nh

s1 = 1.
The simplest transitions that do not obey the selection rule (4) involve creation of three c0
pseudofermion holes and three holons, as follows.

(iii) Second-UHB transitions such that �Nc0 = −3,�Mc,−1/2 = 2,�Ms,−1/2 = −2,�Mc =
3, and �Ms = −3. The minimal excitation energy for such transitions is 4µ. The sub-class
of these transitions that also obey the restrictions of equation (6) is such that �Nh

s1 = 1.
The simplest transitions of types (i) and (ii) that do not obey the restrictions (6) involve
creation of three s1 pseudofermion holes:

(i′) and (ii′) transitions with the same values for the deviations �Nc0,�Mc,−1/2,�Ms,−1/2,
�Mc,�Ms as for the above general (i) and (ii) transitions, respectively, and �Nh

s1 = 3.
The minimal excitation energy for such transitions is zero and 2µ, respectively.

For the Mott–Hubbard insulator quantum phase such that n = 1 one often shifts the
ground-state zero-energy level to the middle of the Mott–Hubbard gap. Then the excitation
energies 0, EMH, and 2EMH become 0, EMH/2, and 3EMH/2, respectively. Here we call the
excited energy eigenstates of the transitions (iii) three-holon states, because these involve the
creation of three holons. Such excited energy eigenstates also involve the annihilation of three
c0 pseudofermions. Moreover, we call the excited energy eigenstates of transitions (i′) and (ii′)
three-s1-hole states. These involve creation of three s1 pseudofermion holes. Finally, LHB and
UHB excited energy eigenstates belonging to the sub-class of the general states generated by
both the transitions (i) and (ii) such that �Nh

s1 = 1 are called one-holon and one-s1-hole states.
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Figure 1. Electron addition (ω > 0) and removal (ω < 0) spectrum for a half-filled finite-site ring,
with U = 12t . Note the logarithmic scale for the weights. The five-holon states are not shown.
Indeed, the contributions of these states are extremely small and their energies are out of the shown
energy window.

We start by evaluating the relative weight of the excited states of type (iii) (or states of
types (iii), (i′), and (ii′)) relative to the weight of the states of types (i) and (ii) (or states of
types (i) and (ii) such that �Nh

s1 = 1) when all these states are generated by application to the
ground state of the spin-up electron creation operator. (The types of excited energy eigenstate
refer to the above transitions which generate these states from the ground state.) To assess the
importance for finite values of L of the three-holon final states of type (iii) and three-s1-hole
states of types (i′) and (ii′), we perform an exact diagonalization of small chains. There is
no one-to-one correspondence between the small-chain weight associated with each specific
excited energy eigenstate and the excited-energy-eigenstate weight for L → ∞. However,
there is such a correspondence for the spectral-weight sum rules of the states of types (i) and (ii)
generated by dominant processes, relative to the sum rule of the states of type (iii). Moreover,
within the excited energy eigenstates generated by dominant processes, we consider the relative
weight of the states of types (i′) and (ii′). For these spectral-weight sum rules the small-chain
results provide values for the relative weights which agree up to 99% with the corresponding
thermodynamic-limit values.

The full electron addition and removal spectrum for six sites with six electrons (half filling)
is shown in figure 1 for U = 12t . (We checked that similar results are obtained for larger finite
systems.) The first Hubbard bands at ±EMH/2 are generated by dominant processes, whereas
the second Hubbard bands at +3EMH/2 and −3EMH/2 result from processes generated by
the above i > 0 operators θ̃

†
i, j,σ and θ̃i, j,σ , respectively. Note that the first and second

Hubbard bands are well separated. The weights of the latter bands are orders of magnitude
smaller than the contribution from the first Hubbard bands. The states centred around 3EMH/2
are three-holon states of type (iii). As a result of the half-filling particle–hole symmetry,
there is a corresponding structure for electron removal centred around −3EMH/2. The latter
structure is associated with creation of two rotated-electron unoccupied sites. (We recall that the
−1/2 holon number deviation selection rule (4) refers to excited-energy-eigenstate electronic
densities such that n < 1. There is a corresponding +1/2 holon number deviation selection
rule for n > 1.)

In figure 2 we plot the contribution of different excited energy eigenstates to the sum rule
for half filling. For this, we have followed adiabatically the weights of different states as the
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Figure 2. The contribution of different states to the electron-addition sum rule for half filling. Over
99% of the sum rule is exhausted by one-holon and one-s1 pseudofermion hole excited energy
eigenstates of type (ii). For larger systems this remains true if we also consider the states of type
(ii′), which like the states of type (ii) are also associated with dominant processes generated by the
i = 0 operator θ̃

†
0, j,σ .

(This figure is in colour only in the electronic version)

value of U/t is reduced, and summed the weight over the particular family of states. Analysis
of the figure reveals that the contribution of the three-holon excited energy eigenstates of type
(iii) to the total sum rule is largest at intermediate values U ≈ 4t . It does not exceed 0.25%
in the total sum rule. For large values of U/t it decreases as (t/U)4, while for small values as
(U/t)4. The three-s1-hole contribution of the above states of type (ii′) is also less than 0.25%,
and for small values of U/t it decreases as (U/t)2. (These states belong to a sub-class of
the excited energy eigenstates of type (ii).) While figure 2 corresponds to n = 1, the relative
spectral weight of the excited energy eigenstates of type (iii) decreases for decreasing values of
the electronic density n. For instance, at quarter filling such a weight is 2% of that of half filling
and vanishes as n → 0. Thus, at quarter filling and U ≈ 4t the excited energy eigenstates of
types (i) and (ii) (including the states of types (i′) and (ii′)) correspond to ≈99.99% of the total
spectral weight and the states (iii) to ≈0.005% of such a weight.

Evaluation for the model metallic phase of the available spectral-weight contributions by
the method of [8, 9] confirms that the above results remain valid for L → ∞. The exception
is the relative weight of the excited energy eigenstates of types (i′) and (ii′), which increases
for increasing values of L. This is confirmed by the values given in table 1, which displays the
relative weights generated by the transitions to the one-s1-pseudfermion-hole excited energy
eigenstates that obey the relation (6) both for the one-electron removal and addition spectral
functions. These weights were obtained for the one-electron spectral functions as U/t → ∞.
For L → ∞ and U/t → ∞ the use of the method of [12] leads to values of the relative
weights for one-electron removal and addition of approximately 98% and 94%, respectively.
On the other hand, the set of excited energy eigenstates which obey the exact selection rule (4)
is larger: it corresponds to the whole one-rotated-electron spectral weight. The excited energy
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Table 1. The relative weight of the one-s1-pseudfermion hole contributions that obey relation (6)
in the U/t → ∞ limit for finite-size systems of N electrons.

N Electron removal Electron addition

6 0.998 792 0.977 515
8 0.997 486 0.972 141

10 0.996 277 0.968 088
12 0.995 178 0.964 847
14 0.994 176 0.962 156
16 0.993 258 0.959 862
18 0.992 409 0.957 867
20 0.991 622 0.956 105
22 0.990 886 0.954 531
24 0.990 196 0.953 109

eigenstates of types (i′) and (ii′) are associated with dominant processes generated by the i = 0
operator θ̃

†
0, j,σ . In contrast, the states of type (iii) are not generated by dominant processes and

remain having very little spectral weight as L → ∞.
Let us next consider the limit of large U/t , where the L → ∞ problem can be handled

analytically by the method of [12]. In that case the general c0 pseudofermions of [8, 9] become
the spin-less fermions used in the studies of [11, 12]. Our first goal is the confirmation that
the contribution from the three-holon states of type (iii) is very small and leads nearly to the
same relative weight both for L → ∞ and finite values of L. For large values of U/t one can
derive a systematic t/U expansion for the electron–rotated-electron unitary operator defined
by equations (21)–(23) of [13]. (See [19], which studies that transformation for large values of
U/t .) By use of the inverse of the relation between the one-electron and one-rotated-electron
operators given in equation (19) of [13] in such a t/U expansion, we find after some algebra
the following partial sum rule:
∫

A2UHB(ω) dω = t4

U 4

〈
3
2 − 2S0S1 − 2S1S2 − 2S0S2

〉
spin

× 〈n̂x0,c0n̂x1,c0n̂x2,c0〉, (7)

where n̂x j ,c0 = f †
x j ,c0 fx j ,c0. The expectation value

〈
3
2 − 2S0S1 − 2S1S2 − 2S0S2

〉
spin

refers
to the spin degrees of freedom. The partial sum rule (7) corresponds to the second UHB.
This band is generated by transitions to the above three-holon states of type (iii) and involves
annihilation of three c0 pseudofermions. The expectation value to find three neighbouring local
c0 pseudofermions is

〈n̂x0 ,c0n̂x1,c0n̂x2,c0〉 =
∣∣∣∣∣∣

〈 f †
x0,c0 fx0,c0〉 〈 f †

x0 ,c0 fx1,c0〉 〈 f †
x0 ,c0 fx2,c0〉

〈 f †
x1,c0 fx0,c0〉 〈 f †

x1 ,c0 fx1,c0〉 〈 f †
x1 ,c0 fx2,c0〉

〈 f †
x2,c0 fx0,c0〉 〈 f †

x2 ,c0 fx1,c0〉 〈 f †
x2 ,c0 fx2,c0〉

∣∣∣∣∣∣

= n3 − 2n sin2(πn)

π2
+ sin2(πn) sin(2πn)

π3

− n sin2(2πn)

4π2
. (8)

This expectation value has the following limiting behaviour:

〈n̂x0 ,c0 n̂x1,c0 n̂x2,c0〉 =





4π6

135
n9 if n � 1;

1 − 3(1 − n) if 1 − n � 1.
(9)
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Note that the spectral weight generated by the transitions to the three-holon states of type (iii)
decreases rapidly away from half filling. At quarter filling (n = 1/2) it is about 2% of that at
half filling.

The expectation values associated with the spin degrees of freedom can in the
thermodynamic limit and for large values of U/t be evaluated by use of the relation between
the 1D Hubbard model and the spin 1/2 isotropic Heisenberg chain [11, 12]. This leads to the
following values [20]:

〈S0S1〉spin = 1
4 − ln 2 ≈ −0.443 147 (10)

〈S0S2〉spin = 1
4 − 4 ln 2 + 9

4ζ(3) ≈ 0.182 039, (11)

so that
〈

3
2 − 2S0S1 − 2S1S2 − 2S0S2

〉
spin

= 12 ln 2 − 9
2ζ(3) ≈ 2.91. (12)

The sum rule of the second UHB is then given by
∫

A2UHB(ω) dω ≈ 2.91
t4

U 4
〈n̂x0,c0n̂x1,c0n̂x2,c0〉. (13)

For the six-site finite-size cluster, the expectation value (12) is
〈

3
2 − 2S0S1 − 2S1S2 − 2S0S2

〉
spin

= (169 + 17
√

13)/78 ≈ 2.95, (14)

which is about 1% off from the thermodynamic-limit value given in equation (12). The
asymptotic behaviour 2.95t4/U 4 is shown in figure 2 as a dashed line.

Our above numerical results for all values of U/t and a small system lead to the same
general picture as the results for L → ∞. For electron addition the relative spectral weight of
the excited energy eigenstates of types (i) and (ii) generated by dominant processes is minimum
for U ≈ 4t . This minimum value decreases with decreasing density. For half filling it is
given by ≈99.75%, whereas for quarter filling it reads ≈99.99% and in the limit of vanishing
density it becomes ≈100.00%. The extremely small amount of missing one-electron addition
spectral weight corresponds mainly to the three-holon states of type (iii) generated by the i > 0
operators θ̃

†
i, j,σ . Transitions from the ground state to higher-order five-holon/five-c-hole states

generated by the latter operators lead to nearly vanishing spectral weight.
The three-s1-hole states of types (i′) and (ii′) are generated by a sub-class of dominant

processes. The relative weight of these excited energy eigenstates increases for increasing
values of the system length L. For one-electron addition its maximum value occurs at half
filling and is of about 6% as L → ∞. (At n = 1 there are no LHB one-electron addition
excited energy eigenstates of types (i) and (i′).) For half filling, all values of U/t , and L → ∞,
over 99% of the one-electron addition spectral weight corresponds to generation of one-holon
and one- and three-s1-pseudofermion holes. This is similar to the relative weights of figure 2
for finite L. For L → ∞ the amount of one-electron spectral weight generated by dominant
processes increases for decreasing values of the electronic density for all values of U/t .

While for electron addition the states of types (i) and (ii) such that �Nh
s1 = 1 correspond

to at least 94% of the spectral weight, for electron removal the �Nh
s1 = 1 excited energy

eigenstates amount for at least 98% of the total weight. However, we note that concerning
the small amount of spectral weight generated by the excited energy eigenstates such that
�Nh

s1 > 1, the case of the 1D Hubbard model is different from that of the t − JXY model
considered in [21]. The significant difference is the SU(2) symmetry in the spin sector of
the 1D Hubbard model, which by standard selection rules prohibits matrix elements that are
present in the t − JXY case. For instance, for low energy such a symmetry protects the lower
edge of the removal and addition spectrum being dressed by s1 pseudofermion particle–hole
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excited energy eigenstates in the main conformal tower (see figure 5 in [12]). The low-energy
�Nh

s1 = 3 excited energy eigenstates are for the 1D Hubbard model mostly associated with
the next conformal tower centred at 3kF for the spin excitations. In the t − JXY case, there is
no similar protecting mechanism and, therefore, the weight is more easily redistributed among
the s1 pseudofermion particle–hole excited energy eigenstates. Let us also note that the studies
of [22] have addressed the same question for other models. The authors of that reference found
that the weight coming from �Nh

s1 = 1 excited states is also dominant.

3. Rotated-electron generators of the one-electron spectral weight

In this section we study the pseudofermion microscopic processes associated with the
excitations c†

j,σ |GS〉 and c j,σ |GS〉 which could be expressed in terms of operators of general
form given in equation (3). Fortunately, for all values of U/t more than 99% of the
spectral weight associated with such excitations corresponds to the i = 0 contributions of
expression (3). Therefore, here we limit our study to the i = 0 operators θ̃

†
0, j,σ and θ̃0, j,σ ,

which generate nearly the whole one-electron spectral weight measured in photoemission
experiments [1, 2]. Indeed, for the electronic densities of the TTF and TCNQ stacks of
molecules considered in the photoemission experiments of [2] the studies of the previous
section reveal that the dominant processes generated by the operators θ̃

†
0, j,σ and θ̃0, j,σ account

for more than ≈99.9% of the total one-electron spectral weight. We note that in spite of
the recent improvements in the resolution of photoemission experiments [2], it is difficult to
measure the finest details of the electronic structure experimentally, in part due to the extrinsic
losses that occur on very anisotropic conducting solids such as the organic compound TTF-
TCNQ [23]. Therefore, the less than 0.01% of missed theoretical spectral weight is irrelevant
for the description of the spectral features measured by photoemission experiments.

Following the exact selection rule of equation (5) and the corresponding rule for Lc,−1/2,
the CPHS ensemble subspaces of the excited energy eigenstates generated by application of
the operators c†

j,σ and c j,σ onto the ground state can have the following values for the numbers
{Lc,−1/2, Ls,−1/2}.

c†
j,↓ operator: {0, 0}, {1, 0}, {0, 1}, {1, 1}; c j,↓ operator: {0, 0};

c†
j,↑ operator: {0, 0}, {1, 0}; c j,↑ operator: {0, 0}, {0, 1}.

We emphasize that the expressions of the operators θ̃0, j,σ and θ̃
†
0, j,σ only depend on

the values {Lc,−1/2, Ls,−1/2} of the CPHS ensemble subspace they refer to. Different CPHS
ensemble subspaces with the same values for {Lc,−1/2, Ls,−1/2} have the same expressions for
the operators θ̃0, j,σ and θ̃

†
0, j,σ . Evaluation of the commutators given in equation (27) of [9]

for the one-electron case considered here together with the property that the i = 0 operators
θ̃0, j,σ and θ̃

†
0, j,σ have the same expressions in terms of rotated-electron creation and annihilation

operators as the corresponding operators θ̂ j,σ and θ̂
†
j,σ , respectively, in terms of creation and

annihilation electronic operators, leads to the following expressions:

θ̃
†
0, j,↓ = c̃†

j,↓, {0, 0},
θ̃

†
0, j,↓ = (−1) j

√
Na − N0 + 1

c̃ j,↑, {1, 0},

θ̃
†
0, j,↓ = 1√

N0
↑ − N0

↓ + 1
c̃†

j,↑, {0, 1},

θ̃
†
0, j,↓ = − (−1) j

√
(Na − N0 + 1)(N0

↑ − N0
↓ + 1)

c̃ j,↓, {1, 1},

(15)
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and
θ̃

†
0, j,↑ = c̃†

j,↑, {0, 0},
θ̃

†
0, j,↑ = − (−1) j

√
Na − N0 + 1

c̃ j,↓, {1, 0},
θ̃0, j,↑ = c̃ j,↑, {0, 0},
θ̃0, j,↑ = − 1√

N0
↑ − N0

↓ + 1
c̃ j,↓, {0, 1},

θ̃0, j,↓ = c̃ j,↓, {0, 0},

(16)

where we recall that 0 � N0 � Na and 0 � N0
↓ � N0

↑ . Here the values of the numbers
{Lc,−1/2, Ls,−1/2} are those provided above and N0, N0

↑ , and N0
↓ are the electron numbers of

the initial ground state.
The CPHS ensemble subspaces associated with η-spin value deviations �η and spin value

deviations �S such that �η = −1/2 and �S = −1/2 are not permitted for initial ground
states such that N0 = Na and N0

↓ = N0
↑ , respectively. The reason is that for such ground states

the η-spin and spin values are η0 = 0 and S0 = 0, respectively, and thus negative deviations
�η and �S are not allowed. It follows that for N0

↓ = N0
↑ ground states, the transitions to

CPHS ensemble subspaces such that Ls,−1/2 = 0 cannot be generated by application of the
operators c†

j,↓ and c j,↑ onto such initial ground states. The case of the N0
↓ = N0

↑ ground states
plays an important role in the applications of our results and those of [8, 9]. In the following,
we provide the expression of the operators θ̃0, j,σ and θ̃

†
0, j,σ of equations (15) and (16) in terms

of pseudofermion creation and annihilation operators for the set of CPHS ensemble subspaces
associated with the N0

↓ = N0
↑ ground states.

The one-electron processes generated by the rotated-electron operator c̃†
j,σ give rise to

the LHB when Mc,−1/2 = 0 and UHB when Mc,−1/2 = 1. According to the exact selection
rules (4), those are the only permitted values for the excited-energy-eigenstate −1/2 holon
numbers. Since the numbers of the initial ground-state CPHS subspace are known and well
defined, here we characterize the CPHS ensemble subspaces of the excited states associated
with the dominant processes by the deviation numbers and numbers �Nc0,�Ns1, Ns2, and
Ls,−1/2. For the UHB we also consider the numbers Nc1 and Lc,−1/2. As discussed above, our
aim is the study of the dominant microscopic processes that generate the excitations c†

j,↑|GS〉
and c j,↓|GS〉 where |GS〉 is a N0

↓ = N0
↑ ground state.

For simplicity, here and in the ensuing section we consider local generators which are the
Fourier transform of the corresponding generators associated with processes such that for each
CPHS ensemble subspace all pseudofermion and pseudofermion holes are created away from
the Fermi points for the c0 and s1 branches and from the momentum values of largest absolute
value for the s2 and c1 branches. Similar expressions can be derived for processes including
creation of pseudofermions or holes at such Fermi points and limiting momentum values [8, 9].

The whole Mc,−1/2 = 0 LHB spectral weight of the excitation θ̃
†
0, j,↑|GS〉 corresponds to

{Lc,−1/2, Ls,−1/2} = {0, 0} CPHS ensemble subspaces. According to equation (16), in such
subspaces the above excitation reads θ̃

†
0, j,↑|GS〉 = c̃†

j,↑(1 − ñ j,↓)|GS〉 where (1 − ñ j,↓) is the
LHB projector. We recall that the LHB processes do not exist for the N0 = Na half-filling
ground state. Otherwise, the spectral weight of this excitation is generated by transitions to the
excited energy eigenstates which span the set of CPHS ensemble subspaces such that

�Nc0 = 1, �Ns1 = −2Ns2, Ns2 = 0, 1. (17)

For simplicity, here and in other equations given below we have included only the αν branches
with finite pseudofermion occupancy for the subset of CPHS ensemble subspaces considered in
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our study, which correspond to nearly the whole spectral weight. Thus, the deviation �Nh
s1 =

�Nc0−2�Ns1−2Ns2 in the number of s1 pseudofermion holes is �Nh
s1 = −1+2Ns2 for these

subspaces. We note that for the present case of zero magnetization the s1 pseudofermion band is
full for the ground state. Therefore, the deviation �Nh

s1 equals the number of s1 pseudofermion
holes of the CPHS ensemble subspace excited energy eigenstates.

At least 94% of the spectral weight of θ̃
†
0, j,↑|GS〉 = c̃†

j,↑(1 − ñ j,↓)|GS〉 corresponds to
the CPHS ensemble subspace such that �Nc0 = 1, �Ns1 = 0, Ns2 = 0, and �Nh

s1 = −1.
These numbers obey the relation (6). In this subspace the pseudofermion expression of the
operator θ̃

†
0, j,↑ = c̃†

j,↑(1 − ñ j,↓) is given in equation (47) of [9]. Nearly the whole of the
remaining spectral weight of the above LHB excitation is associated with the CPHS ensemble
subspace whose numbers are �Nc0 = 1,�Ns1 = −2, Ns2 = 1, and �Nh

s1 = 3. Such values
do not obey the relation (6). In this subspace, the pseudofermion expression of the operator
θ̃

†
0, j,↑ = c̃†

j,↑(1 − ñ j,↓) reads

θ̃
†
0, j,↑ = c̃†

j,↑(1 − ñ j,↓) = e−i j�PJ

√
n/2

GC
f †
x1 ,s2 fx j ′+1,s1 fx j ′ ,s1 f †

x j ,c0, (18)

where the values of the phase-factor momentum �PJ and U/t independent real positive
constant GC are specific to the subspace and are given in [9], the effective s1 lattice index reads
j ′ = jn/2 and the effective s2 lattice is reduced to a single site such that x1 = x j . Here and
below the equality j ′ = jn/2 (and j ′ = jδ for the effective c1 lattice) should be understood
as j ′ being the closest integer number to jn/2 (and jδ). (We recall that the effective c0 lattice
index j equals that of the rotated-electron lattice [17].)

Next, we consider the excitation c j,↓|GS〉. Again, more than 99% of the spectral
weight corresponds to the excitation θ̃0, j,↓|GS〉. Such an excitation is associated with
{Lc,−1/2, Ls,−1/2} = {0, 0} CPHS ensemble subspaces where according to equation (16),
θ̃0, j,↓|GS〉 = c̃ j,↓(1 − ñ j,↑)|GS〉. Here the projector (1 − ñ j,↑) is associated with the
ground-state lack of rotated-electron double occupation [13]. Most of the spectral weight of
this excitation is generated by transitions to the states which span the set of CPHS ensemble
subspaces such that

�Nc0 = −1, �Ns1 = −1 − 2Ns2, Ns2 = 0, 1, (19)

and �Nh
s1 = 1 + 2Ns2. Up to 98% of the spectral weight of θ̃0, j,↓|GS〉 = c̃ j,↓(1 − ñ j,↑)|GS〉

corresponds to the CPHS ensemble subspace whose deviations read �Nc0 = −1, �Ns1 = −1,
Ns2 = 0, and �Nh

s1 = 1. These values obey the relation (6). The pseudofermion expression of
the operator θ̃0, j,↓ = c̃ j,↓(1 − ñ j,↑) in this subspace is given in equation (46) of [9]. Nearly the
whole of the remaining spectral weight of the above electron-removal excitation is associated
with the CPHS ensemble subspace whose numbers read �Nc0 = −1,�Ns1 = −3, Ns2 = 1,
and �Nh

s1 = 3. These do not obey the relation (6). In this subspace the pseudofermion
expression of the operator θ̃0, j,↓ = c̃ j,↓(1 − ñ j,↑) is given by

θ̃0, j,↓ = e−i j�PJ
n

2GC
f †
x1 ,s2 fx j ′+2,s1 fx j ′+1,s1 fx j ′ ,s1 fx j ,c0, (20)

where j ′ = jn/2 and x1 = x j .
For the Mc,−1/2 = 1 UHB excitations, let us start by considering electronic densities such

that 0 < δ � 1, where δ = [1 − n] is the doping concentration. We are assuming that δ

can be small, but not vanishing. The case of vanishing doping concentrations corresponds to
the Mott–Hubbard insulator phase where (Na − N0) = 0 and to the doped Mott–Hubbard
insulator such that (Na − N0) is finite and will be addressed in the ensuing section. For finite
doping concentrations the whole UHB spectral weight of the excitation θ̃

†
0, j,↑|GS〉 corresponds
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to {Lc,−1/2, Ls,−1/2} = {0, 0} CPHS ensemble subspaces. According to equation (16), such an
excitation can be written as θ̃

†
0, j,↑|GS〉 = c̃†

j,↑ñ j,↓|GS〉 where ñ j,↓ is the UHB projector. For
finite values of δ, most of the spectral weight of this excitation is generated by transitions to the
excited energy eigenstates which span the set of CPHS ensemble subspaces such that

�Nc0 = −1, �Ns1 = −1 − 2Ns2, Nc1 = 1, Ns2 = 0, 1. (21)

The deviation in the number of s1 pseudofermion holes of these subspaces is �Nh
s1 = 1+2Ns2.

At least 94% of the spectral weight of the excitation θ̃
†
0, j,↑|GS〉 = c̃†

j,↑ñ j,↓|GS〉 corresponds
to the CPHS ensemble subspace such that �Nc0 = −1,�Ns1 = −1, Nc1 = 1, Ns2 = 0, and
�Nh

s1 = 1. These obey the relation (6). In this subspace, the pseudofermion expression of the
operator θ̃

†
0, j,↑ = c̃†

j,↑ñ j,↓ is given by

θ̃
†
0, j,↑ = c̃†

j,↑ñ j,↓ = e−i j�PJ f †
x j ′′ ,c1 fx j ,c0 fx j ′ ,s1, (22)

where j ′ = jn/2 and j ′′ = jδ. Nearly the whole of the remaining spectral weight of the
above UHB excitation is associated with the CPHS ensemble subspace whose numbers are
�Nc0 = −1,�Ns1 = −3, Nc1 = 1, Ns2 = 1, and �Nh

s1 = 3. These however do not obey the
relation (6). In this subspace the pseudofermion expression of the operator θ̃

†
0, j,↑ = c̃†

j,↑ñ j,↓ is
given by

θ̃
†
0, j,↑ = e−i j�PJ

n

2GC
f †
x1 ,s2 f †

x j ′′ ,c1 fx j ′+2,s1 fx j ′+1,s1 fx j ′ ,s1 fx j ,c0, (23)

where j ′ = jn/2, j ′′ = jδ, and x1 = x j .

4. The metal–Mott–Hubbard insulator quantum phase transition

The further understanding of the microscopic processes behind the quantum phase transitions is
a problem of great physical interest, as mentioned in section 1. For the 1D Hubbard model there
is only one quantum phase transition as a function of the on-site repulsion U , which occurs at
U = 0 for half filling. As a function of the interaction, such transitions are controlled by the
dependence on that interaction of the local quantum entanglement [14]. On the other hand
for all finite values of U there is a metal–insulator quantum phase transition which occurs as a
function of the electronic density at n = 1. In terms of the doping that quantum phase transition
occurs at δ = 0. Here we study the microscopic effects of that quantum phase transition on the
one-electron spectral properties.

Let us consider the case when δ is vanishing, i.e. there are no c0 pseudofermion holes (half-
filling) or there is a finite number of such holes in the initial ground state (doped Mott–Hubbard
insulator). As the number of holes decreases and one reaches the doped Mott–Hubbard
insulator regimen, there arises a competition of the UHB processes considered in the previous
section with other UHB processes. The latter processes correspond to the excitation θ̃

†
0, j,↑|GS〉

for CPHS ensemble subspaces such that {Lc,−1/2, Ls,−1/2} = {1, 0}. Thus, according to

equation (16), one has that θ̃
†
0, j,↑|GS〉 = −[(−1) j/

√
Na − N0 + 1]c̃†

j,↓ñ j,↑|GS〉, where ñ j,↑
is the UHB projector. Note that for finite values of the doping concentration δ the one-
electron spectral weight associated with such an excitation vanishes in the thermodynamic limit
L → ∞. Most of this weight is generated by transitions to the excited energy eigenstates which
span the set of CPHS ensemble subspaces such that

�Nc0 = −1, �Ns1 = −1 − 2Ns2, Lc,−1/2 = 1, Ns2 = 0, 1, (24)

and �Nh
s1 = 1 + 2Ns2. For vanishing values of the doping concentration at least 94% of the

spectral weight of the excitation θ̃
†
0, j,↑|GS〉 corresponds to the CPHS ensemble subspace with
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numbers �Nc0 = −1,�Ns1 = −1, Lc,−1/2 = 1, Ns2 = 0, and �Nh
s1 = 1. Such numbers

obey the relation (6). In this subspace the pseudofermion expression of the operator θ̃
†
0, j,↑ reads

θ̃
†
0, j,↑ = − (−1) j

√
Na − N0 + 1

c̃†
j,↓ñ j,↑ = − e−i j [�PJ +π ]

√
Na − N0 + 1

fx j ′ ,s1 fx j ,c0, (25)

where j ′ = j/2. Nearly the whole of the remaining spectral weight of such a UHB excitation
is associated with the CPHS ensemble subspace whose numbers are �Nc0 = −1,�Ns1 =
−3, Lc,−1/2 = 1, and �Nh

s1 = 3. These do not obey the relation (6). In this subspace the
pseudofermion expression of the operator θ̃

†
0, j,↑ is given by

θ̃
†
0, j,↑ = − (−1) j

√
Na − N0 + 1

c̃†
j,↓ñ j,↑

= e−i j [�PJ +π ]

2GC

√
Na − N0 + 1

f †
x1,s2 fx j ′+2,s1 fx j ′+1,s1 fx j ′ ,s1 fx j ,c0, (26)

where j ′ = j/2 and x1 = x j .
For finite values of δ, the UHB processes associated with CPHS ensemble subspaces

such that {Lc,−1/2, Ls,−1/2} = {1, 0} are allowed. However, for finite doping concentrations
the relative UHB weight of the {Lc,−1/2, Ls,−1/2} = {0, 0} and {Lc,−1/2, Ls,−1/2} = {1, 0}
processes is approximately given by 1/δL and thus vanishes in the thermodynamic limit, as
mentioned above. Therefore, the weight of the UHB {Lc,−1/2, Ls,−1/2} = {1, 0} processes
associated with the CPHS ensemble subspaces of numbers (24) vanishes for finite values of δ.

In contrast, for half filling only the UHB {1, 0} processes contribute, whereas for finite yet
small values of (Na − N0) both the {0, 0} and {1, 0} processes contribute to the UHB spectral
weight. If the value of (Na − N0) further increases so that δ becomes finite, the weight of the
UHB {1, 0} processes vanishes. For N0 = Na and (Na − N0) finite but small, the relative
weight of the {0, 0} and {1, 0} processes is approximately given by 1/[Na − N0 + 1].

We thus conclude that the collapse of the LHB processes and the interplay between the
{0, 0} and {1, 0} UHB processes for decreasing values of (Na − N0) are the main effects of
the (Na − N0) → 0 metal–Mott–Hubbard insulator quantum phase transition onto the one-
electron spectral properties. The ground-state–excited-energy-eigenstate transitions associated
with the {0, 0} and {1, 0} UHB processes change the value of η spin by �η = −1/2 and
�η = +1/2, respectively. For the metallic phase at finite values of the doping concentration
the whole UHB weight corresponds to excited states with deviation �η = −1/2, whereas
for the Mott–Hubbard insulator phase only the excited states with deviation �η = +1/2 are
allowed. However, the physics of the doped Mott–Hubbard insulator, which corresponds to a
finite number of holes (Na − N0), is different: it involves a competition between the two above
classes of states. Such a competition is mainly controlled by the form of the operators given
in equations (22) and (25), which generate excited energy eigenstates with η-spin deviations
�η = −1/2 and �η = +1/2, respectively.

5. Concluding remarks

In this paper we used pseudofermion description in the study of the non-perturbative
microscopic processes that control the unusual one-electron spectral-weight distributions of
the 1D Hubbard model. While at low energy, that model belongs to the universality class
of the Luttinger liquid [24], its finite-energy properties are controlled by pseudofermion
scattering [10]. Our results are useful for the further understanding and description of the
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microscopic mechanisms behind the unusual finite-energy spectral properties observed in
quasi-1D compounds [1, 2]. They also provide new insights about the microscopic mechanisms
of quantum phase transitions in electronic correlated problems. We found that for the doped
Mott–Hubbard insulator there is a competition between the microscopic processes which
determine the UHB one-electron spectral distributions of the Mott–Hubbard insulator phase
and metallic phase for finite values of the doping concentration. Our studies considered the
1D Hubbard model, which describes successfully some of the exotic properties observed in
low-dimensional materials [1–4, 25]. Our results also apply to the related integrable interacting
problems [26] and therefore have wide applicability.
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